PV RESILIENCE: ADDRESSING WEATHER VULNERABILITIES

Step-by-step guidance to conducting a field audit to identify vulnerabilities and actions that can be taken to address them

PV PERFORMANCE

How have PV Systems performed over time?

PV IS RELIABLE

IN AN ANALYSIS OF 100,000 PV SYSTEMS, 80% TO 90% PERFORMED WITHIN 10% OF PREDICTED PRODUCTION OR BETTER¹

IMPACT OF 2017 HURRICANE SEASON

What was the major vulnerability found across PV arrays in Region 2?

BERKELEY LAB AND NATIONAL RENEWABLE ENERGY LABORATORY

assessed the impact of the 2017 hurricane season on 5 PV arrays in the Caribbean

INADEQUATE FASTENERS FOUND ACROSS ALL SITES

SMALL UP-FRONT INVESTMENT IN LOCKING HARDWARE, CLAMPS, AND THROUGH-BOLTING CAN HELP PROTECT PV ARRAYS²

DEVELOPING GUIDANCE

Addressing weather vulnerabilites

BERKELEY LAB worked with the Federal Energy Management Program (FEMP) to identify additional weather vulnerability risks

RISK ASSESSMENTS

FOR SAFETY, **PERFORMANCE** AND FINANCIAL³

CORRECTIVE **ACTIONS**

MANY ARE LOW COST 4

CONSULT QUALIFIED **ENGINEERS**

TO INTEGRATE BEST PRACTICES 5

KEY VULNERABILTIES AND POTENTIAL SOLUTIONS

What are the key vulnerabilities that lab researchers identified?

Structural

vulnerabilities

Top down clamps

loosening or bending To correct: Use throughbolting or top-down clamps with improved features 6

Inadequate structural attachments to building in roof arrays

To correct: Add mechanical attachments to improve structural integrity⁷

Electrical

vulnerabilities

Improper wire management

To correct: Protect wires from weather, support every 12 inches with clamps, clips or ties 8

Inadequate electrical enclosures

To correct: Use proper NEMA-rated enclosures based on the site's environmental conditions 9

Site

vulnerabilities

Unobstructed wind forces

To correct: Use a wind calming fence to reduce wind forces on the PV system¹⁰

Loose debris and equipment

To correct: Secure or remove loose equipment and debris from the area around the PV system 11

Structural vulnerabilities exhibit the greatest safety, performance and financial risks. Wind is the most damaging weather factor and also the most complex to understand and plan for.

¹Jordan, DC, Marion, B, Deline, C, Barnes, T, Bolinger, M. PV field reliability status—Analysis of 100 000 solar systems. Prog Photovolt Res Appl. 2020; 28: 739 – 754 ²Solar Array Inspection, Failure Analysis, Specifications and Repair Scopes of Work, Caribbean Region. Gerald Robinson (LBNL), Andy Walker and Ran Fu (NREL) April 2018, p.9 ³Federal Solar Photovoltaic Arrays, Gerald Robinson (LBNL) December 2020, p.6 4lbid, p.14 5lbid, p.8 6lbid, p.19 7lbid, p.32 8lbid, p.39 9lbid, p.50 10lbid, p.55 11lbid, p.58

